Parallel Adaptive Mesh Refinement Scheme for Turbulent Non-Premixed Combusting Flow Prediction
نویسندگان
چکیده
A parallel adaptive mesh refinement (AMR) algorithm is proposed for predicting turbulent non-premixed combusting flows characteristic of gas turbine engine combustors. The Favre-averaged Navier-Stokes equations governing mixture and species transport for a reactive mixture of thermally perfect gases in two dimensions, the two transport equations of the k-ω turbulence model, and the time-averaged species transport equations, are all solved using a fully coupled finite-volume formulation. A flexible block-based hierarchical data structure is used to maintain the connectivity of the solution blocks in the multi-block mesh and facilitate automatic solution-directed mesh adaptation according to physics-based refinement criteria. This AMR approach allows for anisotropic mesh refinement and the block-based data structure readily permits efficient and scalable implementations of the algorithm on multi-processor architectures. Numerical results for turbulent non-premixed diffusion flames, including coldand hot-flow predictions for a bluff body burner, are described and compared to available experimental data. The numerical results demonstrate the validity and potential of the parallel AMR approach for predicting complex non-premixed turbulent combusting flows.
منابع مشابه
A parallel adaptive mesh refinement algorithm for predicting turbulent non-premixed combusting flows
International Journal of Computational Fluid Dynamics Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455064 A parallel adaptive mesh refinement algorithm for predicting turbulent non-premixed combusting flows X. Gao a; C. P. T. Groth a a Institute for Aerospace Studies, University of Toronto, Toronto, Ont....
متن کاملA parallel solution - adaptive method for three-dimensional turbulent non-premixed combusting flows
A parallel adaptive mesh refinement (AMR) algorithm is proposed and applied to the prediction of steady turbulent non-premixed compressible combusting flows in three space dimensions. The parallel solution-adaptive algorithm solves the system of partial-differential equations governing turbulent compressible flows of reactive thermally perfect gaseous mixtures using a fully coupled finite-volum...
متن کاملParallel Adaptive Mesh Refinement Scheme for Three-Dimensional Turbulent Non-Premixed Combustion
A parallel adaptive mesh refinement (AMR) algorithm is described for predicting turbulent non-premixed gaseous combusting flows in three space dimensions. The Favreaveraged Navier-Stokes equations governing a reactive mixture of thermally perfect gases, the two transport equations of the k-ω turbulence model, and the time-averaged species transport equations, are all solved using a fully couple...
متن کاملParallel Solution-Adaptive Method for Two-Dimensional Non-Premixed Combusting Flows
A parallel adaptive mesh refinement (AMR) algorithm is proposed and applied to the predictions of both laminar and turbulent steady non-premixed compressible combusting flows. The parallel solution-adaptive algorithm solves the system of partial-differential equations governing two-dimensional axisymmetric laminar and turbulent compressible flows for reactive thermally perfect gaseous mixtures ...
متن کاملParallel, Block-Based, Adaptive Mesh Refinement, Finite-Volume Scheme for Solution of Three-Dimensional Favre-Averaged Navier-Stokes Equations
Parallel, Block-Based, Adaptive Mesh Refinement, Finite-Volume Scheme for Solution of Three-Dimensional Favre-Averaged Navier-Stokes Equations Shawn Prasad Masters of Applied Science Graduate Department of Aerospace Engineering University of Toronto 2013 A parallel, block-based, adaptive mesh refinement, finite-volume scheme is developed and validated for the solution of the Favre-Averaged Navi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006